Printed Pages - 7 Roll No.:.....

324453(25)

B. E. (Fourth Semester) Examination, 2020 APR-MAY 2022 (New Scheme)

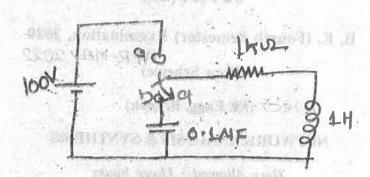
E) ec (EE Engg. Branch)

NETWORK ANALYSIS & SYNTHESIS

Time Allowed: Three hours

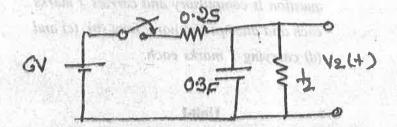
Maximum Marks: 80

Minimum Pass Marks: 28

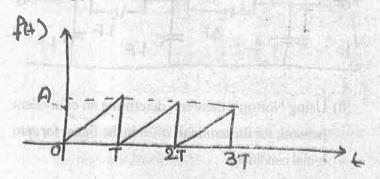

Note: Attempt all questions. Part (a) of each question is compulsory and carries 2 marks each and attempt two parts from (b), (c) and (d) carrying 7 marks each.

Unit-I

1. (a) Define Ramp and impulse functions.


(b) In the network of fig shown below, the switch is changed from the postion a to b on t = 0. Solve for

$$l, \frac{di}{dt}$$
 and $\frac{d^2l}{dt^2}$ at $t = 0^+$.



(c) In the network of figure shown below, the switch is open for a long time and at t = 0, it is closed.

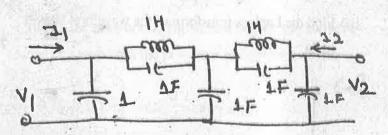
Determine $v_2(t)$. The states were the second of the sec

(d) Find the Laplace transform of the waveform shown in fig.

Unit-II

- 2. (a) Define driving point function.
 - (b) Discuss the restriction locating the poles and zeros of a driving point function is s-plane.
 - (c) For the network shown in the figure, show that the voltage-ratio transfer function is

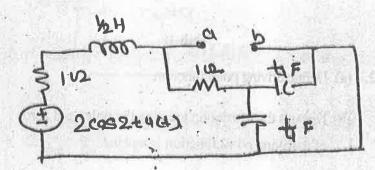
$$G_{12} = \frac{\left(S^2 + 1\right)^2}{5s^4 + 5s^2 + 1}$$
 7


324453(25)

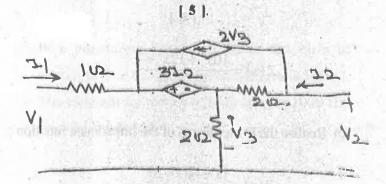
2

7

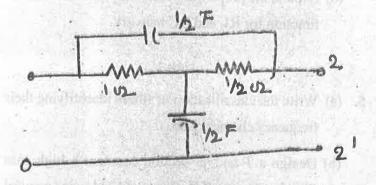
1775


(a) Donne Renny and impulse thus their

(d) Using Norton's theorem, determine an equivalent network for the terminals a - b in the figure for zero initial conditions.


7

2



Unit-III

- 3. (a) Explain Bartlett's bisection theorem.
 - (b) The accompanying network contains a voltage controlled source and a current centrolled source. For the element values specified, determine the Y and Z parameters.

(c) Determine the ABCD (transmission) parameters for the network show below.

(d) Obtain the z-parameters in terms of h-parameters.

Unit-IV

- 4. (a) What are the properties of postive real functions?
 - (b) Realise the Cauer forms of the following LC impedence function:

324453(25

(c) Realise the Foster forms of the impedence function: 7

$$Z(s) = \frac{(s+1)(s+3)}{s(s+2)}$$

(d) Explain the properties of driving point immittance function for RL and RC network.

Unit-V

- 5. (a) Write the classification of filters idsentifying their frequency characteristic.
 - (b) Design a T and π section constant-k high pass filter having cut-off frequency of 12 kHz and nominal impedance $R_0 = 500 \,\Omega$. Also find its characteristic impedance and phase constant at 24 kHz.
 - (c) Derive the expression for characteristics impedence of π -typé low pass filter. Also prove that

$$Z_{0t} = \sqrt{Z_{sc} \times Z_{0c}}$$

(d) In a constant-k band-fass filter, the ratio of capacitance in the shunt and series arm is 100:1.

The resonent frequency of both arms is 1000 Hz.

Find the bandwidth.

7

2